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1 Introduction
In oil refinery plants, the structural vibration behavior of gas pipeline systems can be strongly
affected by the response of the acoustic domain represented by the gas being transported through
pressurized pipes, cylinders and other related components. The resultant Acoustically Induced
Vibration (AIV) can be a cause of failure, for example, in reciprocating compression systems.
In this work, the authors present a strategy based on the acoustic Transfer Matrix Method (see
Theory Reference A) and on the Timoshenko beam theory to represent the referred acoustic-
structure interaction in gas pipelines as a weakly coupled system, modeled by the Finite Element
Method (FEM). The suggested procedure has several benefits for low frequency analysis such
as:

• i) assuming propagation of acoustic plane waves, TMM-based procedures are more ad-
vantageous in terms of computational cost and accuracy than FEM for 1D acoustics even
considering filters, volumes, valves and branches as equivalent impedances; in addition,
the reflection effects of pipe elbows can be considered;

• ii) structural FEM models based on beam theory are well consolidated for predicting global
vibrations of pipe systems; in this work, the C0 Timoshenko’s formulation also allows to
obtain better stress/strain values when compared to other classical formulations;
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• iii) the one-way coupling is sufficient to represent the acoustic-structure interaction consid-
ering low excitation frequencies and typical relations between internal diameter and wall
thickness of pipes used in refinery plants.

This text is based in the Section 5.4 of the book: The Finite Element Method: Linear Static
and Dynamic Finite Element Analysis [4], originally published by Thomas J. R. Hughes in 1987.
Some parts were taken directly from the referred book. Here, different from what is done by
Hughes, it is considered linear elastodynamics by keeping the inertial forces in the “strong form"
of the equilibrium equation.

The classical Euler-Bernoully beam theory requires C1-continuity, resulting in schemes that
can be complicated to be implemented for multidimensional problems. On the other hand, the
classical Timoshenko beam theory requires only C0-continuity, enabling the use of finite element
shape functions that are easily constructed.

However, some analytical methodologies (based on “fixed" cubic polynomials to represent
bending, which are basis for the analytical solution of the problem) used to implement some
Timoshenko beam elements are not interesting in the sense of changing shape functions or in
adopting methodologies to improve stress calculations. So, we choose the “original finite element
technology" to implement our Timoshenko beam element.

2 Main assumptions

2.1 Domain

We assume from the start that the domain is divided into segments (or elements), interconnected
at nodal points [4]:

Ω =
nel⋃
e=1

Ωe, (1)

Ωe = {(xe1, xe2, xe3)|xe1 ∈ [0, he], (xe2, x
e
3) ∈ Ae ⊂ R2}. (2)

We initially assume that the (xe1, x
e
2, x

e
3)-axes are locally defined with respect to the beam segment

and are principal axes [4]. See Fig. 1. So,∫
A

xe2dA =

∫
A

xe3dA =

∫
A

xe2x
e
3dA = 0. (3)

To save writing, the superscript e will be omitted in some expressions.
In OpenPulse, we also consider the possibility of applying an offset between

local coordinates and the beam’s neutral axis as described in [6]. For the sake of
simplicity, this theory reference details the main hypotheses and physical meaning
by considering only the assumption in Eq. (3).

2.2 Shear stress

Different from Euler-Bernoulli theory, here σ21 (= σ12) and σ31 (= σ13) are not null (σγ1 6= 0).
However, σ23 = 0 and σ32 = 0 (there is no bending along x2 and x3). So,

σβγ = 0 (4)
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Figure 1: Local coordinates [Source: author].

2.3 Kinematic constraints

The tridimensional displacements of a point (x1, x2, x3) that belongs to a cross-sectional area A
placed in x1 are given by [1, 4, 7]:

u1(x1, x2, x3, t) = w1(x1, t)− x2θ3(x1, t) + x3θ2(x1, t), (5)

u2(x1, x2, x3, t) = w2(x1, t)− x3θ1(x1, t), (6)

u3(x1, x2, x3, t) = w3(x1, t) + x2θ1(x1, t). (7)

Consequently, the movement of a given point (x1, x2, x3) in Ωe is described by:

u(x1, x2, x3, t) =


u1(x1, x2, x3, t)
u2(x1, x2, x3, t)
u3(x1, x2, x3, t)

 . (8)

The translation components wi of the neutral line and the rotation angles θi of the sectional
area are illustrated in Fig. 2. These kinematic constraints do not include warping (the plane
sections remain plane). Besides that, it is considered that w1, w2 and w3 are small when compared
to he, and sin θi ≈ tan θi ≈ θi.

In Euler-Bernoully theory, θβ = dwγ/dx (plane section remains perpendicular to the neutral
axis). On the other hand, in Timoshenko theory θβ > dwγ/dx, as can be observed in Fig. 2.
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Figure 2: Deformation components in Timoshenko beam theory [1].

3 Mechanical equilibrium and constitutive equation
The local condition of mechanical equilibrium in a continuum medium Ω is given by [3]:

divσ + F = ρü, (9)

where the entity F represents the body forces acting on Ω and ρ is the density of the material.
Rewriting in Einstein notation (see [3] for a review on index notation):

in Ω :


σii,i + Fi = ρüi,

σii,i = Cijklεkl,

εij = u(i,j);

(10)

on Γg : ui = gi; (11)

and
on Γk : σii,inj = ki, (12)

where C is the constitutive tensor, ε is the strain tensor, Γg is the boundary of Ω where Dirichlet
boundary conditions gi are applied, and Γk is the boundary of Ω where Newmann boundary
conditions ki are applied (at normal direction n). The sub-indexes inside parenthesis indicate
derivatives. The strain tensor ε and the stress tensor σ can be also written in the following
vector form:
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ε(u) =



u(1,1)

u(2,2)

u(3,3)

u(2,3) + u(3,2)

u(1,3) + u(3,1)

u(1,2) + u(2,1)


, (13)

and

σ(ε) =



σ1,1

σ2,2

σ3,3

σ2,3

σ1,3

σ1,2


. (14)

Considering the homogeneous isotropic case [4], we have:

σij = λεkkδij + 2µεij, (15)

where δij is the “delta of Kronecker" (see [3] for a review on continuum mechanics), and λ and
µ are the Lamé parameters, which are obtained by:

λ =
νE

(1 + ν)(1− 2ν)
, (16)

and
µ =

E

2(1 + ν)
. (17)

The Young’s modulus E and the Poisson’s ration ν are intrinsic material properties considering
an isotropic media.

Assuming the hypothesis presented in Eq. (4):

0 = σβγ = λεkkδβγ + 2µεβγ, (18)

which leads to
εββ =

−λ
λ+ µ

ε11, (19)

and to
εβγ =

−λε11

2(λ+ µ)
δβγ. (20)

Using Eqs. (19) and (20) in Eq. (15):

σ11 = λεkk + 2µε11 = λεββ + (λ+ 2µ)ε11. (21)

So,
σ11 = Eε11 , (22)

and
σγ1 = 2µεγ1 . (23)
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4 Kinematic relations: strain-displacement equations
Employing the kinematic conditions stated in Section 2.3, we obtain the following relations:

εβγ = u(βγ) = 0, (24)

ε11 = w′1 − x2θ
′
3 + x3θ

′
2, (25)

ε21 =
1

2
(w′2 − x3θ

′
1 − θ3), (26)

ε31 =
1

2
(w′3 + x2θ

′
1 + θ2). (27)

where the primes denote differentiation with respect to x1 (d(·)/dx1).
Hughes’ remark [4]: As is often the case in beam, the stress and kinematic assumptions

lead to “microscopic" inconsistencies. For example, from Section 2.2 we have deduced Eq. (20),
whereas we have εβγ = 0 if calculating as done in Section 4. For purposes of calculating σβγ1,
the former expression is preferred. These inconsistencies ultimately cause no harm, and, as we
have remarked previously, the ultimate justification of a “macroscopic" theory such as this one
is its usefulness in practical structural engineering applications.

5 Variational equation: principle of virtual work
Consider Eq. (9) the strong form of the considered problem. Assuming the virtual displacement
field u (a kinematic admissible field), the variational equation can be written as [4, 7]:∫

Ω

u(ij)σijdΩ−
∫

Ω

uiFidΩ−
∫

Γk

uikidΓ +

∫
Ω

uiρüidΩ = 0. (28)

Eq. (28) is obtained from Eq. (9) using the divergence theorem (considering a generic
function f): ∫

Ω

f(,i)dΩ =

∫
Γ

fnidΓ, (29)

and integration by parts (considering generic functions f and g):∫
Ω

f(,i)gdΩ = −
∫

Ω

fg(,i)dΩ +

∫
Γ

fgnidΓ. (30)

In the next equations, we will adopt (considering dA = dx2dx3) the following relation:∫
Ω

dΩ =
nel∑
e=1

∫
Ωe

dΩ =
nel∑
e=1

∫ he

0

∫
Ae

dAdx1. (31)

Without loss of generality, we shall assume Γk = � due to the “line shape" of the simplified
structure. All distributed external loads (force/length or moment/length) will be considered in
the body force vector F .

Thus, Eq. (28) can be rewritten as:

0 =
nel∑
e=1

{∫ he

0

∫
Ae

(2u(γ,1)σγ1 + u(1,1)σ11)dAdx1

−
∫ he

0

∫
Ae

uiFidAdx1 +

∫ he

0

∫
Ae

uiρüidAdx1

}
.

(32)
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Using the properties defined in Eq. (3), Eq. (32) can be written as

0 =
nel∑
e=1

{∫ he

0

∫
Ae

[
(w′2 − x3θ

′
1 − θ3)σ21 + (w′3 + x2θ

′
1 + θ2)σ31

+ (w′1 − x2θ
′
3 + x3θ

′
2)σ11

]
dAdx1 −

∫ he

0

∫
Ae

[
(w2 − x3θ1)F2

+ (w3 + x2θ1)F3 + (w1 − x2θ3 + x3θ2)F1

]
dAdx1

+

∫ he

0

∫
Ae

[
w2ẅ2 + w3ẅ3 + w1ẅ1 + θ1θ̈1(x2

2 + x3
3)

+θ2θ̈2x
2
3 + θ3θ̈3x

2
2

]
ρdAdx1

}
.

(33)

Contracting this relation leads to:

0 =
nel∑
e=1

{∫ he

0

[
(w′2 − θ3)q2 + (w′3 + θ2)q3 + w′1q1 + θ

′
2m2 − θ

′
3m3 + θ

′
1m1

]
dx1

−
∫ he

0

[
w2F2 + w3F3 + w1F1 + θ2C2 − θ3C3 + θ1C1

]
dx1

+

∫ he

0

[
(w2ẅ2 + w3ẅ3 + w1ẅ1)ρAe + θ1θ̈1ρJ

e + θ2θ̈2ρI
e
2 + θ3θ̈3ρI

e
3

]
dx1

}
,

(34)

where
Ie2 =

∫
Ae

x2
3dA, (35)

Ie3 =

∫
Ae

x2
2dA, (36)

Je =

∫
Ae

(x2
2 + x2

3)dA = Ie2 + Ie3 , (37)

q1 =

∫
Ae

σ11dA = E

∫
Ae

(w′1 − x2θ
′
3 + x3θ

′
2)dA = EAeε, (38)

q2 =

∫
Ae

σ21dA = µ

∫
Ae

(w′2 − x3θ
′
1 − θ3)dA = µAeγ2, (39)

q2 =

∫
Ae

σ31dA = µ

∫
Ae

(w′3 + x2θ
′
1 + θ2)dA = µAeγ3, (40)

m1 =

∫
Ae

(σ31x2 − σ21x3)dA = µ

∫
Ae

[
(w′3 + x2θ

′
1 + θ2)x2

− (w′2 − x3θ
′
1 − θ3)x3

]
dA = µJeΨ,

(41)

m2 =

∫
Ae

σ11x3dA = E

∫
Ae

(w′1 − x2θ
′
3 + x3θ

′
2)x3dA = EIe2κ2, (42)

m3 =

∫
Ae

σ11x2dA = E

∫
Ae

(w′1 − x2θ
′
3 + x3θ

′
2)x2dA = −EIe3κ3. (43)
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In the equations above: κβ = θ′β is called “curvature"; ε = w′1; γ2 = w′2 − θ3; γ3 = w′3 + θ2;
Fi = {F e

i } and Ci = {Ce
i } are the element applied external forces and couples, respectively, per

unity length, for 1 ≤ e ≤ nel, where

F e
i =

∫
Ae

FidA, (44)

Ce
1 =

∫
Ae

(F3x2 −F2x3)dA, (45)

Ce
2 =

∫
Ae

F1x3dA, (46)

and
Ce

3 =

∫
Ae

F1x2dA. (47)

5.1 Weak form of the problem

The variational equation in Eq. (34) is also known as the weak form of the problem. The
equivalence of strong and weak forms can be proved, as can be seen in [4] and in [2]. However,
the weak form enables adopting non smooth trial functions to represent the global displacements,
which is the main assumption for implementing the Finite Element Method (FEM).

Rearraging Eq. (34) using Eqs. (35) to (43), we obtain:

0 =
nel∑
e=1

{∫ he

0

(
γ2µA

e
sγ2 + γ3µA

e
sγ3 + κ2EI

e
2κ2 + κ3EI

e
3κ3

+ εEAeε+ ΨµJeΨ

)
dx1

−
∫ he

0

(
w2F2 + w3F3 + w1F1 + θ2C2 − θ3C3 + θ1C1

)
dx1

+

∫ he

0

(
(w2ẅ2 + w3ẅ3 + w1ẅ1)ρAe + θ1θ̈1ρJ

e + θ2θ̈2ρI
e
2 + θ3θ̈3ρI

e
3

)
dx1

}
,

(48)

or, using a matricial form (and now emphasizing that the integration is performed over the
element length):

0 =
nel∑
e=1

{∫ he

0

[
γTDsγ + κTDbκ+ ε(EAe)ε+ Ψ(µJe)Ψ

]
dxe1

−
∫ he

0

[
wTF + θ

T
C

]
dxe1

+

∫ he

0

[
wTGtrẅ + θ

T
Grθ̈

]
dxe1

}
,

(49)

where

w =


w1

w2

w3

 ,θ =


θ1

θ2

θ3

 , (50)
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γ =

{
γ2

γ3

}
,κ =

{
κ2

κ3

}
, (51)

Ds =

[
µAes 0

0 µAes

]
,Db =

[
EIe2 0

0 EIe3

]
, (52)

Gtr =

ρAe 0 0
0 ρAe 0
0 0 ρAe

 , (53)

Gr =

ρJe 0 0
0 ρIe2 0
0 0 ρIe3

 . (54)

6 Bubnov-Galerkin method
It is not necessary to assume the same shape functions for transverse and extensional displace-
ments, or for bending and torsional rotations. Arguments can be made, if fact, that there are
some conceptual advantages to employing different interpolations in the present context. How-
ever, there are practical advantages to employing same shape functions, which can be seen in
commercial finite element codes.

We shall assume that [4]:

wei (x1, x2, x3, t) =

npel∑
a=1

Nawe
ia, (55)

and

θei (x1, x2, x3, t) =

npel∑
a=1

Naθ
e
ia, (56)

where Na is the shape function related to the “weights" wia and θia at node a in element e.
In order to obtain the element matrices, we assume the following vector form for the element’s

degrees of freedom weights and element’s load weights:

de =



we
11

we
21

we
31

θe11

θe21

θe31
...

we
1npel

we
2npel

we
3npel

θe1npel
θe2npel
θe3npel



, (57)
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Consequently, 

we1(x1, x2, x3, t)
we2(x1, x2, x3, t)
we3(x1, x2, x3, t)
θe1(x1, x2, x3, t)
θe2(x1, x2, x3, t)
θe3(x1, x2, x3, t)


= Nde, (58)

where

N =


N1 0 0 0 0 0 ... Nnpel 0 0 0 0 0
0 N1 0 0 0 0 ... 0 Nnpel 0 0 0 0
0 0 N1 0 0 0 ... 0 0 Nnpel 0 0 0
0 0 0 N1 0 0 ... 0 0 0 Nnpel 0 0
0 0 0 0 N1 0 ... 0 0 0 0 Nnpel 0
0 0 0 0 0 N1 ... 0 0 0 0 0 Nnpel

 . (59)

Thus there are six degrees of freedom per node, and we can write (from Eq. (49)):

κ = Bbde, (60)

γ = Bsde, (61)

ε = Bade, (62)

Ψ = Btde, (63)

w = Ntrde, (64)

θ = Nrde, (65)

where
Bb =

[
Bb

1, ..., Bb
npel

]
, (66)

Bs =
[
Bs

1, ..., Bs
npel

]
, (67)

Ba =
[
Ba

1, ..., Ba
npel

]
, (68)

Bt =
[
Ba

1, ..., Bt
npel

]
, (69)

Ntr =
[
Ntr

1 , ..., Ntr
npel

]
, (70)

Nr =
[
Nr

1, ..., Nr
npel

]
, (71)

Bb
a =

[
0 0 0 0 N′a 0
0 0 0 0 0 N′a

]
, (72)
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Bs
a =

[
0 N′a 0 0 0 −Na

0 0 N′a 0 Na 0

]
, (73)

Ba
a =

[
N′a 0 0 0 0 0

]
, (74)

Bt
a =

[
0 0 0 N′a 0 0

]
, (75)

Ntr
a =

 Na 0 0 0 0 0
0 Na 0 0 0 0
0 0 Na 0 0 0

 , (76)

Nr
a =

 0 0 0 Na 0 0
0 0 0 0 Na 0
0 0 0 0 0 Na

 , (77)

with 1 ≤ a ≤ npel.
With these definitions, we obtain the following expressions for the stiffness, mass and load

(with respect to the local coordinate system):

Ke = Ke
b + Ke

s + Ke
a + Ke

t , (78)

Ke
b =

∫ he

0

BbTDbBbdxe1, (bending stiffness) (79)

Ke
s =

∫ he

0

BsTDsBsdxe1, (shear stiffness) (80)

Ke
a =

∫ he

0

BaT (EA)Badxe1, (axial stiffness) (81)

Ke
t =

∫ he

0

BtT (µJ)Btdxe1, (torsional stiffness) (82)

Me = Me
tr + Ke

r , (83)

Me
tr =

∫ he

0

NtrTGtrNtrdxe1, (translational mass) (84)

Me
r =

∫ he

0

NrTGrNrdxe1, (rotational mass) (85)

and

pe =

∫ he

0

NT



F1

F2

F3

C1

C2

C3


dxe1. (86)
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7 Element coordinates and shape functions
The equations above was obtained considering operations in the global coordinate system. How-
ever, one of the advantages of FEM is to carry out mathematical operations in the local coordi-
nate system of each element. In this work, the element coordinate system adopted is illustrated
at the bottom of Fig. 3.

Figure 3: Element coordinates [Source: author].

The mapping from global to element coordinates is performed as in Eqs. 57 and 58. In
OpenPulse we consider the following linear shape functions:

N1(ξ) =
1

2
(1− ξ), N2(ξ) =

1

2
(1 + ξ). (87)

With the change of variables, the differential dx1 in the necessary integrations is replaced by

dx1 = detJdξ, (88)

where, for this specific case [7],

detJ =
∂x1

∂ξ
=

1

2
le. (89)

IMPORTANT NOTE: B(x) = J−1B(ξ).
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8 Numerical integration
OpenPulse employs Gauss quadrature to evaluate the integrals in the weak formulation over a
symmetrical range of ξ from -1 to 1.

It uses one point of integration along the length for element stiffness matrix (in order to
avoid locking effects), and two points for element mass matrix.

• Stiffness: ξ1 = 0; weight1 = 2;

• Mass: ξ1 = −
√

3/3; ξ2 =
√

3/3; weight1 = 1; weight2 = 1.

9 Element transformation matrix
In Sections 6 and 7, the element stiffness and mass matrices are obtained considering a local
coordinate system parallel to the reference coordinate system. However, 3D pipe systems require
a transformation of each element into the its real position. The element transformation matrix
TR is defined as:

TR =


T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T

 , (90)

where

T =

 C1C2 S1C2 S2

−C1S2S3 − S1C3 −S1S2S3 + C1C3 S3C2

−C1S2C3 + S1S3 −S1S2C3 − C1S3 C3C2

 , (91)

with

S1 = (y2 − y1)/lxy if lxy < dl; (92)
S1 = 0 if lxy ≤ dl; (93)

S2 = (z2 − z1)/le; (94)
S3 = sin θl; (95)

C1 = (x2 − x1)/lxy if lxy < dl; (96)
C1 = 1 if lxy ≤ dl; (97)

C2 = lxy/le; (98)
C3 = cos θl. (99)

In the equations above, le is the element length, lxy =
√

(x2 − x1)2 + (y2 − y1)2; d = 0.0001le
and θl = 0. Indexes 1 and 2 for coordinates x, y and z refer to the node position considering the
respective element connectivity.

10 Matrix assembly

Noting that the global vector d is obtained by d =
⊎nel
e=1 d

e (assembly process, considering
elements that share same degrees of freedom), we can rewrite Eq. (49) as:

d
T

[
nel⊎
e=1

Ke

]
d + d

T

[
nel⊎
e=1

Me

]
d̈ = d

T

{
nel⊎
e=1

pe
}
. (100)
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So, the global matrices and load vector are defined as:

K =

[
nel⊎
e=1

Ke

]
; M =

[
nel⊎
e=1

Me

]
;p =

{
nel⊎
e=1

pe
}
. (101)

And, considering any (but admissible) d:

Kd + Md̈ = p. (102)

For numerical implementation in Python, see Theory Reference C.

11 Damping model
The damping matrix C used in harmonic analysis (considering only the material damping) is
defined as

C = αM + (β +
1

ω
η)K, (103)

where α is the mass-proportional coefficient, β is stiffness-proportional coefficient, and η is the
structural (hysteretic) damping. ω = 2πf , where f is the excitation frequency.

12 Shear correction factor
In OpenPulse, the shear correction factor µ used in the calculation of Ke

s was adapted from
Pilkey’s book [6] (more details will be presented in V2.0 of this Theory Reference). It is performed
a numerical integration over the cross-section to obtain the section’s constants and the shear
correction factors. The cross-sectional area is composed of N elements (default for calculations:
N=64). However, the simplified equation found in [5] is a very good approximation for thin and
thick walled pipes:

µ =
6

(7 + 20k2)
, (104)

where
k =

a

1 + a2
, (105)

and a = di/do, with di and do being external and internal diameter of the pipe section, respec-
tively.

13 Prescribed forces and moments
See Eq. 86 for distributed forces and moments. For nodal forces and moments, the value can be
inserted directly in the respective entry of p in Eq. 102.

14 Themes to be presented in Theory Reference D (which
depend on the Analysis Types)

• prescribed displacements;

• internal pressure loads;
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• springs, masses and dampers;

• Stress calculation in vibration problems.

References
[1] L. Andersen and S. R. K. Nielsen. Elastic Beams in Three Dimensions. DCE Lecture Notes

No. 23 - Aalborg University, 2008.

[2] J. Fish and T. Belytschko. A First Course in Finite Elements. Wiley, 2007.

[3] G. A. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley,
2000.

[4] T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis. Dover, 2000.

[5] E. Oñate. Structural Analysis with the Finite Element Method. Linear Statics. Volume 2:
Beams, Plates and Shells. CIMNE, 2013.

[6] W. D. Pilkey. Anslysis and Desing of Elastic Beams: Computational Methods. John Wiley
& Sons, Inc., 2002.

[7] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method For Solid and Structural
Mechanics. Butterworth-Heinemann, 2005.

15


	Introduction
	Main assumptions
	Domain
	Shear stress
	Kinematic constraints

	Mechanical equilibrium and constitutive equation
	Kinematic relations: strain-displacement equations
	Variational equation: principle of virtual work
	Weak form of the problem

	Bubnov-Galerkin method
	Element coordinates and shape functions
	Numerical integration
	Element transformation matrix
	Matrix assembly
	Damping model
	Shear correction factor
	Prescribed forces and moments
	Themes to be presented in Theory Reference D (which depend on the Analysis Types)

