
OpenPulse - Open source code for numerical modelling of
low-frequency acoustically induced vibration in gas

pipeline systems

Theory Reference C: Fast assembly procedure
V1.0

Jacson G. Vargas, Lucas V. Q. Kulakauskas, André Fernandes,
Olavo M. Silva, José L. Souza, Diego M. Tuozzo and Ana P. Rocha

jgvargas@mopt.com.br

21 May 2020

1 Introduction
The assembly is a procedure in the Finite Element Method that allows obtaining the global ma-
trices based on elementary matrices and elements’ connectivity matrix. The global matrices are
used in the construction of mathematical models of interest regardless of the type of analysis to
be solved. The assembly process requires that all relevant model information such as mesh data,
material and cross-section properties have been previously defined. Specifically, in OpenPulse,
it is necessary that the mesh had already been processed and that all attributes of Node and
Element classes have already been assigned.

Figure 1: Element connectivity.

1



The beam element of OpenPulse (based on the Timoshenko theory) has two nodes, each node
with six degrees of freedom (DOFs) totaling twelve DOFs per element. Therefore, elementary
matrices have a 12x12 dimension. For example, consider a “free" model (without boundary
conditions) composed of two elements and three nodes, as shown in 1a. The process of assembling
the element matrices would result in global matrices with dimensions 18x18, as illustrated in
Fig. 2. As can be seen, at the center of the global matrix two quadrants of elementary matrices
overlap. This overlap, pictured in 1b, is the result of coincidence of DOFs (u and θ) of the
second node of element 1 in relation to the first node of element 2. The coincidence ensures the
continuity C0 of the internal nodes and, therefore, the “coupling” of the DOFs at elements union.

Figure 2: Example of global matrix resulting from the assembly of two beam elements.

Based on what was introduced, the assembly process consists of adding the elementary ma-
trices in their respective spaces within the global matrices, taking account of the element’s
connectivity and the global indices of the element DOFs. The DOFs coupling between elements
arises when in the adding of elementary matrices the same indices are accessed. Representation
through a color scheme of the coupling is shown in Fig. 2, precisely at the lines/columns 7 to
12 of matrix.

In general, finite element models can be easily constituted of hundreds of thousands or even
millions of nodes and elements. In the assembly process as many elementary matrices as the
number of elements will be added. Thus, the number of operations can be considerably high. The
assembly algorithms must be efficient, otherwise, the time spent on assembly and the amount
of memory need to store information can be too high, which is undesirable.

Depending on the volume data involved in the finite model construction, it is common that
the amount of memory required to store the matrices information reaches tens of gigabytes.
For example, a dense square matrix with 105 rows composed of number in 32bits float point

2



notation requires 37.25GB of memory to be stored. Fortunately, the global matrices are sparse
since that have a high number of null elements. For this reason, it is possible to use specific
algorithms for processing sparse matrix. These algorithms considerably reduce the amount of
memory required to store matrices data, since only non-null values and its respective indices are
stored. Additionally, such algorithms reduce the number of operations and, consequently, the
processing time since operations that are known to result in null values are not performed. Also,
the data processing through sparse matrix algorithms made it possible the solution of models
with millions of DOFs in desktop computers.

2 The OpenPulse assembly code
The OpenPulse assembly code was developed using functions for building sparse matrices from
SciPy library and based on vectorization combined with memory pre-allocation. The assembly
of global matrices is performed through the csc_matrix function whose inputs are the values of
matrix elements and their respective indices for rows and columns. The application of this func-
tion is relatively convenient for the assembly process since it automatically adds two elements
with the same indices. Furthermore, it allows to perform efficiently matrix-vector products,
simple arithmetic operations and slicing of columns of global matrices. As applied in the Open-
Pulse, the command line used in the assembly of matrixK, for example, through the csc_matrix
function, is summarized to:

K = csc_matrix((dataK, (i, j)), shape = (total_dofs, total_dofs), dtype = float)

where dataK are the values of matrix elements written in the form of a vector1; i e j the
respective indices of rows and columns of matrix elements; shape defines the matrix dimensions;
and the data type is defined by dtype variable.

The OpenPulse assembly of global matrices is performed inside get_global_matrices()method
of Assembly() class. This method contains a single loop that sweep all elements of model to
calculate the elementary matrices. The values obtained are stacked forming a three-dimensional
data structure. The 3D data arrangement, schematized in Fig. 3, is convenient for the assembly
itself and for the post-processing analyses, such as, for instance, in the calculation of stresses at
elements.

The calculation of global indices of the rows and columns is performed by means of basic
operations and with aid of functions from the NumPy library. The get_gloabal_indexes()
method of Mesh() class returns, in the form of a vector, the calculated values for indices i e j.
The calculation of indices is performed after the mesh processing, therefore, it occurs outside
the loop, reducing the number of operations and, consequently, the processing time. After
gathering all the necessary information, the assembly is carried out using the command line
already mentioned.

Further information on assembly codes and global matrix indices calculation method are
found in Appendix A.

3 Performance of assembly algorithms
The vectorization is a technique that allows improving the code performance of some repetitive
structures. This technique reduces the processing time once repetitive operations, like loops for

1Let M be any matrix (rank 2 or 3). It’s possible to represent M in the form of a vector, concatenating row
by row using the command M.reshape(−1).

3



Figure 3: 3D data arrangement.

Figure 4: Characteristics of algorithms A, B, C and D.

example, are substituted by basic operations between vectors and matrices. These operations
are evaluated in one single run and normally take less time to be processed.

An assembly algorithm can be written in different ways, using 3 loops, 2 loops, or even,
1 loop. In general, the efficiency of the algorithm increases as the number of loops decreases.
Significant reductions in processing time are obtained through the appropriate application of
vectorization technique concomitant to the memory allocation. It is recommended to avoid
concatenating operations, after all, operations that involve memory re-allocation tend to have
high computational costs.

In order to evaluate the performance of assembly algorithms, four generic algorithms A, B,
C and D were implemented for beam elements, like OpenPulse ones. The algorithms are found
in Appendix B and have the characteristics summarized in Fig. 4, where Nel is the number of
elements, Nrows is the number of rows and Ncols is the number of columns.

The algorithm A contains three loops to scan the rows and columns of all elementary matrices.
The algorithm B has two loops whereas the algorithms C and D have only one loop to perform
the same task. In the algorithms C and D, the number of operations performed differs depending
on the structures that calculate the indices of rows and columns. According to lines 30 and 31

4



from algorithm C, the indices i and j for each element node pair are evaluated and stored in the
vectors: rows and cols. In algorithm D, the calculation of indices is carried out before the loop
that sweeps the elements of the model (see lines 19 to 22). Thus, the number of operations of
algorithm C is three times major than algorithm D.

For comparison, it has been performed a benchmark of the processing time of four algorithms,
considering a model composed of 106+1 nodes and 106 elements. To ensure homogeneity in the
tests, it was decided to generate matrices 12x12 of “ones" in the floating-point notation of 32bits
for each element. It should be noted that the objective of benchmark test is to evaluate the
performance of assembly algorithms and not to solve the finite element model itself. The average
processing times obtained2, considering ten consecutive analyses in the average calculation, for
the algorithms A, B, C and D are 101.9s, 47.5s 18.23s and 6.6s, respectively. The assembly
implemented in OpenPulse is based on algorithm D , since it presents a smaller number of
operations, better performance and allows to store in a simple way the elementary matrices for
the post-processing steps.

At this point, it is worth noting that the amount of memory used in storing global matrix
information is considerably less. The same dense matrix of free model considered in the tests
is composed of (106 + 1)2 values. The assembly of sparse matrix requires 122 × 106 values in
float-point notation and 2 × 122 × 106 integers values to form the respective pair of indices i
and j. Directly, the amount of data needed to assembly sparse matrix is 5950 times smaller
compared to the dense matrix. The total memory used to storage the sparse matrix input data
is 3.22GB, while dense matrix would require 3.72TB.

2Desktop configuration - Processor: Intel Core i7 6700K; RAM memory: 32GB HyperX CL15 2400MHz;
Storage: SSD NVMe Corsair MP510 960Gb; Graphic card: NVIDIA Quadro M2000.

5



APPENDIX A

Method to obtain the global matrices

Method to calculate the global indices of the rows and columns for the
assembly process

6



APPENDIX B

Algorithm A

7



Algorithm B

8



Algorithm C

9



Algorithm D

10


	Introduction
	The OpenPulse assembly code
	Performance of assembly algorithms

